

CENTER FOR DRUG EVALUATION & RESEARCH OFFICE OF CLINICAL PHARMACOLOGY

# Translating New Science Into Drug Development & Evaluation



David Strauss, MD, PhD Director, Division of Applied Regulatory Science Office of Clinical Pharmacology, Office of Translational Sciences Center for Drug Evaluation and Research U.S. Food and Drug Administration

### What is Regulatory Science?





3. In Vivo Models



6. Real World Data

4. Biomarkers









Rouse, Zineh, Strauss. Trends in Pharmacological Sciences 2018;39:225-9.



### Why Do We Need Regulatory Science?



### Talk Outline: Regulatory Science at FDA

### **1. Medical Devices**



### 2. Drugs



# **Translational Regulatory Science Approach**



# Cardiac Resynchronization Therapy (Biventricular Pacemaker)

Additional lead for cardiac resynchronization therapy



Traditional pacemaker lead

- Shown to improve heart failure symptoms, reduce heart failure hospitalization and reduce mortality
- However, <u>not all patients benefit</u> and significant risks exist
- Thus, there is a need for better risk stratification and patient identification criteria
- ~20% of patients in clinical trials were women, thus overall results primarily reflect effects in men

# Improved Biomarkers and Diagnostic Criteria for Patient Selection for Therapy



- Patient selection is based on the electrocardiogram (ECG)
- Used modeling & simulation, developed new sex-specific criteria

### Defining Left Bundle Branch Block in the Era of Cardiac Resynchronization Therapy



Strauss et al. American Journal of Cardiology 2011;15:927-34

• Used cardiac MRI to define the heart pumping characteristics of patients most likely to benefit from therapy



Andersson...Strauss. American Heart Journal 2013;165:956-63.

Patients with QRS duration <150 millisec

### **Patient-Level Meta-Analysis of Clinical Trials**

#### **Original Investigation**

### Cardiac Resynchronization Therapy in Women US Food and Drug Administration Meta-analysis of Patient-Level Data

Zusterzeel...Strauss. JAMA: Internal Medicine 2014;174:1340.



- Both women and men benefited
- However women benefited with different characteristics defined by the ECG
- Women with these characteristics did not receive the highest recommendation for therapy because women only represented ~20% of clinical trial patients and this group of men did not benefit



### Real World Data with National Medical Device Registries & Medicare Patients



Cardiac Resynchronization Therapy in Women Versus Men Observational Comparative Effectiveness Study From the National Cardiovascular Data Registry

Zusterzeel...Strauss. *Circulation: Cardiovasc Outcomes 2014;8:S4.* Zusterzeel...Strauss. *J Am Coll Cardiol* 2014;64:887.

Left Bundle Branch Block Predicts Better Survival in Women Than Men Receiving Cardiac Resynchronization Therapy Long-Term Follow-Up of ~145,000 Patients

Loring...Strauss. J Am Coll Cardiol: Heart Failure 2013;1:237. Zusterzeel...Strauss. Am J Cardiol 2015;116:79-84.



- Used national implantable defibrillator registry linked to long term mortality outcomes
- Long-term outcomes of all Medicare patients
- Confirmed results of prior FDA meta-analysis that women benefit more than men

### **Personalized Cardiac Device Therapies Summary**

We have worked to:

- Redefine diagnostic criteria to predict individual patient benefit from implantable medical devices
- Personalize treatment to women vs. men

We have accomplished this through:

- Translational regulatory science approach
- Collaboration within FDA, with Universities, professional societies and other government agencies







# CDER and Clinical Pharmacology



### What do the Torsade Drugs Have in Common?







### What the Heck Is "hERG"?

### Human *Ether-à-go-go-*Related Gene



### International Council on Harmonization Guidelines in Response to Problem – Established in 2005

- S7B: Non-clinical cardiac safety pharmacology
  - hERG potassium channel block
  - Non-clinical action potential or QT study
- E14: Human Clinical 'Thorough QT' study
  - Threshold of concern is ~2% increase in QT (very small!)
    - Most intensive and expensive clinical pharmacology study in drug development
    - Primary goal of assessing QT is to inform whether ECG monitoring in patients is required in clinical phase 3 trials
    - <u>Not</u> to inform whether a drug causes torsade de pointes

As some QT prolonging drugs do not cause torsade de pointes

### Why Is This a Problem?

- False positive attribution of proarrhythmic risk can result in
  - Poor lead compound selection
  - O Unnecessary complexities in drug development (including drugs being dropped from development)
  - o Inaccurate labelling regarding risk
  - Which influences (non-ideal) decisions by healthcare providers and patients



FD/



### The Scale of the Problem

• hERG is "promiscuous"



• Many of these compounds are dropped from development – which is not always justified!

### When Does QT Prolongation Cause Torsade?

FDA



Vicente...Strauss. Clinical Pharmacology & Therapeutics 2018;103:54-66.



Vicente...Strauss. Clinical Pharmacology & Therapeutics 2018;103:54-66.

### FDA

### **Translational Regulatory Science**

nature publishing group

STATE OF THE ART

### Improving the Assessment of Heart Toxicity for All New Drugs Through Translational Regulatory Science

L Johannesen<sup>1,2,3</sup>, J Vicente<sup>2,4</sup>, RA Gray<sup>2</sup>, L Galeotti<sup>2</sup>, Z Loring<sup>2</sup>, CE Garnett<sup>1,5</sup>, J Florian<sup>1</sup>, M Ugander<sup>2,3</sup>, N Stockbridge<sup>6</sup> and DG Strauss<sup>2</sup>

Clinical Pharmacology & Therapeutics 2014;95:501-8.

- Analysis of 34 'Thorough QT' clinical trials submitted to FDA along with corresponding *in vitro* data
- Identified novel electrocardiographic biomarker to differentiate multi-ion channel block

# Going Beyond QT to Differentiate Multi-Channel Effects



*Johannesen...Strauss. Clinical Pharmacology & Therapeutics* 2014;96:549-58.

### **Prospective Clinical Trials**

nature publishing group

#### **CLINICAL TRIAL**

Differentiating Drug-Induced Multichannel Block on the Electrocardiogram: Randomized Study of Dofetilide, Quinidine, Ranolazine, and Verapamil

L Johannesen<sup>1,2</sup>, J Vicente<sup>1,3</sup>, JW Mason<sup>4</sup>, C Sanabria<sup>4</sup>, K Waite-Labott<sup>4</sup>, M Hong<sup>5</sup>, P Guo<sup>5</sup>, J Lin<sup>5</sup>, JS Sørensen<sup>6</sup>, L Galeotti<sup>1</sup>, J Florian<sup>6</sup>, M Ugander<sup>1,2</sup>, N Stockbridge<sup>7</sup> and DG Strauss<sup>1,2</sup>

Clinical Pharmacology & Therapeutics 2014;96:549-58.

Late Sodium Current Block for Drug-Induced Long QT Syndrome: Results From a Prospective Clinical Trial

L Johannesen<sup>1,2</sup>, J Vicente<sup>1,3,4</sup>, JW Mason<sup>5,6</sup>, C Erato<sup>5</sup>, C Sanabria<sup>5</sup>, K Waite-Labott<sup>5</sup>, M Hong<sup>7</sup>, J Lin<sup>7</sup>, P Guo<sup>7</sup>, A Mutlib<sup>7</sup>, J Wang<sup>7</sup>, WJ Crumb<sup>8</sup>, K Blinova<sup>1</sup>, D Chan<sup>1</sup>, J Stohlman<sup>1</sup>, J Florian<sup>3</sup>, M Ugander<sup>1,2</sup>, N Stockbridge<sup>3</sup> and DG Strauss<sup>1,2</sup>

FD/

### **Clinical Trial 1: Two Example Drugs**



Johannesen...Strauss. *Clinical Pharmacology & Therapeutics* 2014;96:549-58.

### Comprehensive in vitro Proarrhythmia Assay (CiPA) Initiative – A Global Effort

#### Proposed at public meeting in July 2013

#### **Nonprofits - Public-Private Partnerships**

- Health and Environmental Sciences Institute
- Cardiac Safety Research Consortium
- Safety Pharmacology Society

#### **Global Regulatory Agencies**

- U.S. Food and Drug Administration
- Japan PMDA / NIHS
- European Medicines Agency
- Health Canada

#### Academia / Industry

- Numerous Pharmaceutical and Device Companies
- Numerous Academic Groups
- Contract Research Organizations



### Comprehensive *in vitro* Proarrhythmia Assay (CiPA): 4 Components



### **1. What Ion Channels Should be Selected?**





Journal of Pharmacological and Toxicological Methods

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jpharmtox

An evaluation of 30 clinical drugs against the comprehensive *in vitro* proarrhythmia assay (CiPA) proposed ion channel panel

Crumb...Strauss. J Pharmacol Toxicol Methods 2016;81:251-62.

### **Studied 7 ion channels**

- Most commonly blocked ion channel currents at clinically relevant concentrations are hERG, late sodium and calcium
- Low risk drugs had equal or greater late sodium or calcium block compared to hERG block

### 2. In silico Working Group



 <u>Goal</u>: Use a computer model of the adult human cardiomyocyte to predict the clinical risk of drug-induced arrhythmias



O'Hara ... Rudy. PLOS Comput Biol 2011;7(5):e1002061.

# Optimized Arrhythmia Risk Prediction & Defining Experimental Uncertainty



#### **Original Article**

Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-àgo-go-Related Gene) Channel–Drug Binding Kinetics and Multichannel Pharmacology

Zhihua Li, PhD; Sara Dutta, PhD; Jiansong Sheng, PhD; Phu N. Tran, PhD; Wendy Wu, PhD; Kelly Chang, PhD; Thembi Mdluli, PhD; David G. Strauss, PhD; Thomas Colatsky, PhD

Circulation: Arrhythmia & Electrophysiology 2017;10:e004628

### Optimization of an *In silico* Cardiac Cell Model for Proarrhythmia Risk Assessment

Sara Dutta, Kelly C. Chang, Kylie A. Beattie, Jiansong Sheng, Phu N. Tran, Wendy W. Wu, Min Wu, David G. Strauss, Thomas Colatsky<sup>†</sup> and Zhihua Li<sup>\*</sup>

Frontiers in Physiology 2017. doi: 10.3389/fphys.2017.0016

Uncertainty Quantification Reveals the Importance of Data Variability and Experimental Design Considerations for *in Silico* Proarrhythmia Risk Assessment

Kelly C. Chang<sup>1</sup>, Sara Dutta<sup>1</sup>, Gary R. Mirams<sup>2</sup>, Kylie A. Beattie<sup>1</sup>, Jiansong Sheng<sup>1</sup>, Phu N. Tran<sup>1</sup>, Min Wu<sup>1</sup>, Wendy W. Wu<sup>1</sup>, Thomas Colatsky<sup>3</sup>, David G. Strauss<sup>1</sup> and Zhihua Li<sup>1\*</sup>

*Frontiers in Physiology* 2017. doi: 10.3389/fphys.2017.00917

### **Arrhythmia Metric – Net Current**

#### **Balance of Inward and Outward Ion Channel Currents**



### 3. Cardiomyocyte Working Group



**<u>Goal</u>**: Identify missed or unanticipated effects not detected from ion channel/*in silico* studies



### Induced Pluripotent Stem Cell Derived Cardiomyocytes



SOT Society of Toxicology

TOXICOLOGICAL SCIENCES, 155(1), 2017, 234-247

doi: 10.1093/toxsci/kfw200 Advance Access Publication Date: October 3, 2016 Research article

### Comprehensive Translational Assessment of Human-Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias

Blinova...Strauss. Toxicological Sciences 2017;155:234-47.

- Study included 26 drugs with 2 laboratory devices and 2 commercially available cell lines
- Subsequent validation study with 10 sites from around the world with multiple cell types and device platforms

Action potential duration



### 4. Phase 1 ECG Biomarker Working Group





- <u>Goal</u>: Use human ECG data to determine if there are unexpected ion channel effects compared to preclinical ion channel data
- New ECG biomarker needs to differentiate multi-ion channel effects

# Prospective Clinical Trials, Selecting Biomarker, Releasing Open Access Software

Differentiating Drug-Induced Multichannel Block on the Electrocardiogram: Randomized Study of Dofetilide, Quinidine, Ranolazine, and Verapamil

Johannesen...Strauss. *Clin Pharmacol Ther* 2014;96:549-58.

Late Sodium Current Block for Drug-Induced Long QT Syndrome: Results From a Prospective Clinical Trial

Johannesen...Strauss. *Clin Pharmacol Ther* 2016;99:214-23.

#### All Clinical Trial Data Freely Downloadable Including Open-Source Algorithm

Automated Algorithm for J-T<sub>peak</sub> and T<sub>peak</sub>-T<sub>end</sub> Assessment of Drug-Induced Proarrhythmia Risk

Johannesen...Strauss. PLOS ONE 2016;11:e0166925.





# Prospective Clinical Validation Study (Clinical Trial 3)



Mechanistic Model-Informed Proarrhythmic Risk Assessment of Drugs: Review of the "CiPA" Initiative and Design of a Prospective Clinical Validation Study

Jose Vicente<sup>1</sup>, Robbert Zusterzeel<sup>2</sup>, Lars Johannesen<sup>2</sup>, Jay Mason<sup>3,4</sup>, Philip Sager<sup>5</sup>, Vikram Patel<sup>2</sup>, Murali K. Matta<sup>2</sup>, Zhihua Li<sup>2</sup>, Jiang Liu<sup>2</sup>, Christine Garnett<sup>1</sup>, Norman Stockbridge<sup>1</sup>, Issam Zineh<sup>2</sup> and David G. Strauss<sup>2</sup>

Clinical Pharmacology & Therapeutics 2018;103:54-66.



Goal: To verify that combined assessment of QT and J-Tpeak can differentiate between drugs that:

- Are selective hERG blockers *versus*
- Have balanced block of hERG and late sodium and/or calcium

### **Regulatory Status of the CiPA Initiative**

- Discussed at 2017 FDA Advisory Committee on model-informed drug development
- Committee supported proposed regulatory applications and validation approach (pending completion of validation studies)
- We have proposed to update ICH S7B/E14 (Q&A)







### **CiPA Summary & Expected Impact**

#### **Drug Development**



# **Related Areas of Scientific Focus – Precision Medicine**

### Common Genetic Variant Risk Score Is Associated With Drug-induced QT Prolongation and Torsade de Pointes Risk.

Strauss et al. *Circulation* 2017;135:1300-1310.

# Weighted score of >60 common genetic variant risk score explains

- 23-30% of variability in QT response
- 12% of variability drug-induced torsade de pointes



### We Need Collaboration To Advance Regulatory Science!

### **Trends in Pharmacological Sciences**

### **Science & Society**

Regulatory Science – An Underappreciated Component of Translational Research Rodney Rouse,<sup>1</sup> Issam Zineh,<sup>2</sup> and David G. Strauss<sup>1,\*</sup> "... we focus on the importance of regulatory science to facilitate development of innovative new drugs and optimize use of approved drugs, with a call for community participation."

Trends in Pharmacological Sciences 2018;39:225-9.

### We Do That Through a Translational Regulatory Science Approach in the Division of Applied Regulatory Science



- Multidisciplinary expertise:
  - Physicians, veterinarians, pharmacists
  - Pharmacologists, toxicologists, physiologists, pharmacokineticists
  - Immunologists, molecular biologists, microbiologists
  - Biochemists, inorganic chemists, pharmaceutical scientists
  - Computational biologists, engineers, bio-physicists, mathematicians

### Additional Example Focus Areas in the Division of Applied Regulatory Science



# 1. Modeling & Simulation



3D Quantitative Structure Activity Relationship Models



2. In Vitro Models



Microphysiological systems ("organ-on-a-chip")

#### 3. In Vivo Models



Immune/liver humanized mice

#### 4. Clinical Pharmacology & Biomarker Studies





### Want to Learn More?

### Translating New Science Into the Drug Review Process: The US FDA's Division of Applied Regulatory Science

Rodney Rouse, DVM, MBA, PhD<sup>1</sup>, Naomi Kruhlak, PhD<sup>1</sup>, James Weaver, PhD<sup>1</sup>, Keith Burkhart, MD<sup>1</sup>, Vikram Patel, PhD<sup>1</sup>, and David G. Strauss, MD, PhD<sup>1</sup>

Therapeutic Innovation & Regulatory Science 2018;52:244-55.



# Thank you!

# FDA U.S. FOOD & DRUG

CENTER FOR DRUG EVALUATION & RESEARCH OFFICE OF CLINICAL PHARMACOLOGY

Special thanks:

- Pre-FDA/CDER
  - Galen Wagner, Duke
  - Hakan Arheden, Lund
  - Kathy Wu, Johns Hopkins
  - Victor Krauthamer, FDA/CDRH
- Goldberg supporters:
  - Issam Zineh, FDA/CDER
  - Norman Stockbridge, FDA/CDER
  - Janet Woodcock, FDA/CDER
  - Robert Califf, FDA & Duke
  - Dan Roden, Vanderbilt

- Multiple additional collaborators from numerous teams from FDA, other government agencies, industry and academia
- Special thanks:
  - Prior PhD students: Lars Johannesen, Jose
    Vicente, Robbert Zusterzeel
  - CiPA steering team and working group members; additional major contributors from FDA: Wendy Wu, Zhihua Li, Ksenia Blinova and <u>many more</u>
- All staff & colleagues from the Division of Applied Regulatory Science and throughout all of the Office of Clinical Pharmacology